Plant pathogens evolve rapidly to overcome the disease control strategies that are deployed against them. Resistance genes often fail within a few years after deployment and fungicide resistance often emerges within a few years after the first spray. Our research is oriented around understanding the processes that drive pathogen evolution with the aim of developing disease management strategies that will remain effective for a long time. Our research is oriented mainly at the level of populations and often includes the individual organisms, but rarely focuses on cellular or molecular processes.
We use many approaches in our research including: experimental evolution in field, greenhouse, and Petri dish settings; comparative genomics based on next-generation sequencing technologies; QTL mapping to identify genes encoding fungicide resistance and pathogen virulence; coalescent analyses of housekeeping genes to reconstruct evolutionary histories of pathogen clades; sequence analyses of genes encoding effectors and other proteins involved in pathogen-plant interactions to identify important mutations; digital image analysis to quantify important quantitative characters.
Prof. Dr. Bruce McDonald
ETH Zurich
Institute of Integrative Biology
8092 Zurich
Tel: +41 (0)44 632 38 47