Evolutionary Genomics
Polyploidization is a frequently observed phenomenon in plant species. It has played an important role as a driving force for evolution in the sense of diversification. Many allopolyploid species have distinct habitats (environmental tolerance), phenotypes or other traits from their parental species. These novel characteristics could have emerged by the combination of multiple genomes. In spite of its interesting role for evolution, polyploidization has not been well studied systematically way, mainly because of the lack of molecular and genomic tools. The recent technical advances, however, are changing the situation.
Our main interest is to reveal how polyploid species adapted to new environment after polyploidization. We focus on transcriptomics, by exploiting the power of latest molecular techniques, e.g. next generation sequencers, to separately detect the expression of homeologs, using genus Arabidopsisand their close relatives. In addition to carrying out molecular research in the wet lab, we collaborate with bioinformaticians, ecologists and cytologists in a multilateral approach to the evolutionary significance of allopolyploidization.
► Google Scholar: https://scholar.google.ch/citations?hl=de&user=S2jOT6wAAAA
Dr. Rie Shimizu-Inatsugi
University of Zurich
Department of Evolutionary Biology and Environmental Studies
8008 Zurich
Tel: +41 (0)44 635 47 60